3.4.8 \(\int \frac {1}{x^8 (1-2 x^4+x^8)} \, dx\) [308]

Optimal. Leaf size=43 \[ -\frac {11}{28 x^7}-\frac {11}{12 x^3}+\frac {1}{4 x^7 \left (1-x^4\right )}+\frac {11}{8} \tan ^{-1}(x)+\frac {11}{8} \tanh ^{-1}(x) \]

[Out]

-11/28/x^7-11/12/x^3+1/4/x^7/(-x^4+1)+11/8*arctan(x)+11/8*arctanh(x)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.375, Rules used = {28, 296, 331, 218, 212, 209} \begin {gather*} \frac {11 \text {ArcTan}(x)}{8}-\frac {11}{28 x^7}-\frac {11}{12 x^3}+\frac {1}{4 x^7 \left (1-x^4\right )}+\frac {11}{8} \tanh ^{-1}(x) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^8*(1 - 2*x^4 + x^8)),x]

[Out]

-11/(28*x^7) - 11/(12*x^3) + 1/(4*x^7*(1 - x^4)) + (11*ArcTan[x])/8 + (11*ArcTanh[x])/8

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 296

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Free
Q[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rubi steps

\begin {align*} \int \frac {1}{x^8 \left (1-2 x^4+x^8\right )} \, dx &=\int \frac {1}{x^8 \left (-1+x^4\right )^2} \, dx\\ &=\frac {1}{4 x^7 \left (1-x^4\right )}-\frac {11}{4} \int \frac {1}{x^8 \left (-1+x^4\right )} \, dx\\ &=-\frac {11}{28 x^7}+\frac {1}{4 x^7 \left (1-x^4\right )}-\frac {11}{4} \int \frac {1}{x^4 \left (-1+x^4\right )} \, dx\\ &=-\frac {11}{28 x^7}-\frac {11}{12 x^3}+\frac {1}{4 x^7 \left (1-x^4\right )}-\frac {11}{4} \int \frac {1}{-1+x^4} \, dx\\ &=-\frac {11}{28 x^7}-\frac {11}{12 x^3}+\frac {1}{4 x^7 \left (1-x^4\right )}+\frac {11}{8} \int \frac {1}{1-x^2} \, dx+\frac {11}{8} \int \frac {1}{1+x^2} \, dx\\ &=-\frac {11}{28 x^7}-\frac {11}{12 x^3}+\frac {1}{4 x^7 \left (1-x^4\right )}+\frac {11}{8} \tan ^{-1}(x)+\frac {11}{8} \tanh ^{-1}(x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 43, normalized size = 1.00 \begin {gather*} \frac {1}{336} \left (-\frac {48}{x^7}-\frac {224}{x^3}-\frac {84 x}{-1+x^4}+462 \tan ^{-1}(x)-231 \log (1-x)+231 \log (1+x)\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^8*(1 - 2*x^4 + x^8)),x]

[Out]

(-48/x^7 - 224/x^3 - (84*x)/(-1 + x^4) + 462*ArcTan[x] - 231*Log[1 - x] + 231*Log[1 + x])/336

________________________________________________________________________________________

Maple [A]
time = 0.04, size = 52, normalized size = 1.21

method result size
risch \(\frac {-\frac {11}{12} x^{8}+\frac {11}{21} x^{4}+\frac {1}{7}}{x^{7} \left (x^{4}-1\right )}-\frac {11 \ln \left (-1+x \right )}{16}+\frac {11 \arctan \left (x \right )}{8}+\frac {11 \ln \left (1+x \right )}{16}\) \(41\)
default \(-\frac {1}{16 \left (-1+x \right )}-\frac {11 \ln \left (-1+x \right )}{16}+\frac {x}{8 x^{2}+8}+\frac {11 \arctan \left (x \right )}{8}-\frac {1}{7 x^{7}}-\frac {2}{3 x^{3}}-\frac {1}{16 \left (1+x \right )}+\frac {11 \ln \left (1+x \right )}{16}\) \(52\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^8/(x^8-2*x^4+1),x,method=_RETURNVERBOSE)

[Out]

-1/16/(-1+x)-11/16*ln(-1+x)+1/8*x/(x^2+1)+11/8*arctan(x)-1/7/x^7-2/3/x^3-1/16/(1+x)+11/16*ln(1+x)

________________________________________________________________________________________

Maxima [A]
time = 0.54, size = 42, normalized size = 0.98 \begin {gather*} -\frac {77 \, x^{8} - 44 \, x^{4} - 12}{84 \, {\left (x^{11} - x^{7}\right )}} + \frac {11}{8} \, \arctan \left (x\right ) + \frac {11}{16} \, \log \left (x + 1\right ) - \frac {11}{16} \, \log \left (x - 1\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(x^8-2*x^4+1),x, algorithm="maxima")

[Out]

-1/84*(77*x^8 - 44*x^4 - 12)/(x^11 - x^7) + 11/8*arctan(x) + 11/16*log(x + 1) - 11/16*log(x - 1)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 68 vs. \(2 (31) = 62\).
time = 0.36, size = 68, normalized size = 1.58 \begin {gather*} -\frac {308 \, x^{8} - 176 \, x^{4} - 462 \, {\left (x^{11} - x^{7}\right )} \arctan \left (x\right ) - 231 \, {\left (x^{11} - x^{7}\right )} \log \left (x + 1\right ) + 231 \, {\left (x^{11} - x^{7}\right )} \log \left (x - 1\right ) - 48}{336 \, {\left (x^{11} - x^{7}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(x^8-2*x^4+1),x, algorithm="fricas")

[Out]

-1/336*(308*x^8 - 176*x^4 - 462*(x^11 - x^7)*arctan(x) - 231*(x^11 - x^7)*log(x + 1) + 231*(x^11 - x^7)*log(x
- 1) - 48)/(x^11 - x^7)

________________________________________________________________________________________

Sympy [A]
time = 0.10, size = 44, normalized size = 1.02 \begin {gather*} - \frac {11 \log {\left (x - 1 \right )}}{16} + \frac {11 \log {\left (x + 1 \right )}}{16} + \frac {11 \operatorname {atan}{\left (x \right )}}{8} + \frac {- 77 x^{8} + 44 x^{4} + 12}{84 x^{11} - 84 x^{7}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**8/(x**8-2*x**4+1),x)

[Out]

-11*log(x - 1)/16 + 11*log(x + 1)/16 + 11*atan(x)/8 + (-77*x**8 + 44*x**4 + 12)/(84*x**11 - 84*x**7)

________________________________________________________________________________________

Giac [A]
time = 2.94, size = 41, normalized size = 0.95 \begin {gather*} -\frac {x}{4 \, {\left (x^{4} - 1\right )}} - \frac {14 \, x^{4} + 3}{21 \, x^{7}} + \frac {11}{8} \, \arctan \left (x\right ) + \frac {11}{16} \, \log \left ({\left | x + 1 \right |}\right ) - \frac {11}{16} \, \log \left ({\left | x - 1 \right |}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^8/(x^8-2*x^4+1),x, algorithm="giac")

[Out]

-1/4*x/(x^4 - 1) - 1/21*(14*x^4 + 3)/x^7 + 11/8*arctan(x) + 11/16*log(abs(x + 1)) - 11/16*log(abs(x - 1))

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 34, normalized size = 0.79 \begin {gather*} \frac {11\,\mathrm {atan}\left (x\right )}{8}+\frac {11\,\mathrm {atanh}\left (x\right )}{8}-\frac {-\frac {11\,x^8}{12}+\frac {11\,x^4}{21}+\frac {1}{7}}{x^7-x^{11}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^8*(x^8 - 2*x^4 + 1)),x)

[Out]

(11*atan(x))/8 + (11*atanh(x))/8 - ((11*x^4)/21 - (11*x^8)/12 + 1/7)/(x^7 - x^11)

________________________________________________________________________________________